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Viscosity and force corrections induced by the elimination of scales of motion
in randomly forced turbulence

L. Machiels*
Fluid Mechanics Laboratory, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland

~Received 15 October 1997!

Systematic scale elimination in the description of randomly forced turbulence leads to a hierarchy of new
terms in the dynamical equations. We consider two of these terms: the viscosity and random forcing correc-
tions. We show how these corrections can be estimated using direct numerical simulation data of homogeneous
isotropic turbulence. In the case of hyperviscous dissipation, the energy spectrum shows, between the inertial
range and the dissipative range, an intermediate range characterized by a reduction of the eddy viscosity and a
correction to the forcing representing a backward energy flux.@S1063-651X~98!02105-9#

PACS number~s!: 47.27.Eq, 47.27.Gs
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Several authors have proposed studying randomly for
turbulent flows@1–3#. Theoretical investigations~e.g., renor-
malization group! have focused on the incompressib
Navier-Stokes equations forced by a Gaussian white-in-t
noise term with a power-law correlation function in spect
space^ f f &}k2y @4–7#. These works explore the analogie
between scalings in turbulence and scalings in field theor
critical phenomena @8#. In these theories, the scale
elimination procedure leads to an eddy viscosity, a force c
rection, a vertex correction and high-order terms~see Eyink
@9#!. Such types of randomly forced turbulent systems h
been studied numerically by Machiels and Deville@10# for
y53. Note also that subgrid scale models including addit
noise terms have been proposed recently~Caratiet al. @11#!.
The aim of this paper is to present a simple mean-squ
algorithm suitable to compute, from the numerical data,
eddy viscosity and the correction to the forcing induced
scale elimination.

More precisely, we consider randomly forced turbulen
described by the following equations:

]v
]t

1vb

]v
]xb

5f2¹p1~21!h11nh¹2hv, ¹•v50.

In these equations,va(x,t) (a51,2,3) andp(x,t) are re-
spectively the velocity and pressure fields,f a(x,t) is a sole-
noidal Gaussian white-noise forcing,h is a positive integer
called the hyperviscosity index, andnh is the hyperviscosity
parameter. The problem is defined on the domainD
5]0,2p@3 with cyclic boundary conditions. We divide th
field v into low-mode ~or supergrid-mode! v, and high-
mode~or subgrid-mode! v. components

v,~x,t !5
1

~2p!3E,
v~k,t !eik•xd3k, and v.5v2v,,
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where*, means that the domain of integration is restrict
to wave numbersuku,kc wherekc is a prescribed cutoff. The
equations for the low modes may be written as

]v,

]t
1S vb

,
]v,

]xb
D ,

5f,2¹p,1~21!h11nh¹2hv,1g,,

¹•v,50,

where

g52vb
,

]v.

]xb
2vb

.
]v,

]xb
2vb

.
]v.

]xb
2¹p..

Note thatp, is not defined by a spectral cutoff but is th
pressure that ensures that@vb

,(]v,/]xb)#,1¹p, is sole-
noidal. We choosep. such thatg is also solenoidal. The
theory of scale elimination gives

g,~x,t !5
law

¹2F E E
0

`

nc~r ,t!v,~x2r,t2t!dtd3r G1fc~x,t !

1~other interactions!,

where the symbol5 law means the equality in a statistica
sense~equality in probability!. Some high-order interaction
terms have been discussed by Rose@12# and Eyink@9#. In the
present work, we focus on the eddy viscositync(r ,t) and on
the force correctionfc(x,t). The idea is to form the following
functional:

F@nc~r ,t!,fc~x,t !#5K Ug,~x,t !2¹2F E E
0

`

nc~r ,t!

3v,~x2r,t2t!dtd3r G2fc~x,t !U2L ,

where g,, v,, and fc are random andnc is deterministic.
The symbol^ & denotes the average. In this expression,g,

and v, are obtained from numerical simulation resul
Then, we seek to determinenc(r ,t) andfc(x,t), which mini-
mize this functional, that is, such that

m
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TABLE I. Flow parameters.

h nh E « L l tE kv s3 s4

ST4 4 5.7310216 0.42 0.158 0.969 0.084 1.82 110 20.32 3.51
ST8 8 1.38310230 0.42 0.16 0.956 0.092 1.807 85 20.29 3.38
ST12 12 2.5310248 0.432 0.159 0.968 0.072 1.803 107 20.21 3.30
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dF@nc~r ,t!,fc~x,t !#

dnc~r ,t!
50 and

dF@nc~r ,t!,fc~x,t !#

dfc~x,t !
50.

This method is general in the sense that high-order inte
tions can also be taken into account and different minimi
tion criteria ~different functionalsF) can be implemented
based on high-order statistics, for instance.

In practice, we work in Fourier space. The Fourier tra
form of the initial forcing is given byf(k,t)5x0(k)h(k,t)
@e.g., x0

2(k)}k2y# where k5uku and h(k,t) is an isotropic
solenoidal Gaussian white-noise term defined by its corr
tion function

^ha~k8,t8!hb~k,t !&5~2p!3Pab~k!d~k1k8!d~ t2t8!,

wherePab(k)5dab2kakb /k2. If we define g̃(k,t)5g(k,t)
1f(k,t), then we try to approximateg̃,(k,t) as

g̃,~k,t !'xc~kukc!h
,~k,t !2nc~kukc!k

2v,~k,t !,

where the notationkukc renders the dependence on the cut
kc explicit. As an additional assumption, we have remov
the time dependence ofnc , i.e., we have assumednc(r,t)
5nc(r)d(t). This approximation, usually referred to as t
Markovian approximation, assumes that the subgrid mo
evolve more quickly than the supergrid modes. The fu
tional F to be minimized reads

F@nc~kukc!,xc~kukc!#5^u g̃,~k,t !1nc~kukc!k
2v,~k,t !

2xc~kukc!h
,~k,t !u2&.

In the implementation of the method, since we treat hom
geneous isotropic turbulent problems and since the diffe
realizations of the velocity field are taken in the statistica
stationary regime, the symbol^ & denotes the combination o
a shell average and a time average. We compute

a~k!52k2^uv,~k,t !u2&,

b~k!5^v,~k,t !•g,* ~k,t !&1^v,* ~k,t !•g,~k,t !&,

where the asterisk denotes the complex conjugate. The s
tion of the systemdF/dnc(k)50 and dF/dxc(k)50 is
given by

nc~kukc!5
b~k!

4pk4x0
2~k!2a~k!

, ~1!

xc~kukc!5
x0~k!$k2b~k!22a~k!18pk4x0

2~k!%

8pk4x0
2~k!22a~k!

. ~2!
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When the external forcing vanishes,x0(k)50, Eq. ~1! is
equivalent to the formula proposed by Domaradzkiet al.
@13# based on the energy transfer.

Different numerical simulations have been perform
with a homogeneous isotropic forcinĝf f &}xo(k)2}k23.
The spatial discretization of the equations is based on
classical Fourier spectral method. The time integration
performed by a second-order Runge-Kutta scheme~the de-
tails of the numerical method are presented in@10#!. For each
of the calculations, the resolution is 2563 modes. The main
features of the simulations are reported in Table I, whereE
and« are respectively the mean energy and the mean d
pation rate,L is the integral length scale,l is the Taylor
microscale,tE is the turnover time,kv5(«/nh

3)1/(6h22) is the
Kolmogorov wave number, ands3 and s4 are respectively
the skewness and flatness of the velocity derivative]u1 /]x1.

The energy spectraE(k) and the rescaled energy fluxe
P(k)/ ln(k) for each of the simulations are represented
Figs. 1~a! and 1~b! @recall that, due to the particular form o
the forcing^ f f &}k23, the energy fluxP(k) is expected to
scale likeP(k)} ln(k)#. The energy spectra present three
gions, namely, from low wave numbers to high wave nu

FIG. 1. Energy spectra~a! and rescaled energy fluxes~b! for the
different simulations.
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bers:~i! the inertial range, which is fairly independent of th
dissipation mechanism;~ii ! the intermediate range, characte
ized by a constant energy flux, but the energy spectrum
highly influenced by the type of dissipation mechanism;~iii !
the dissipative range. The bump of energy in the interme
ate range is usually referred to as the bottleneck devia
and has been previously observed and analyzed, for insta
in Falkovich @14#, Sirovich et al. @15#, and Lohse and
Müller-Groeling @16#.

We have applied Eqs.~1! and~2! to compute the viscosity
nc(kukc) and force correlationsxc

2(kukc) for 5<kc<70 and
for the three simulations ST4, ST8, ST12. In Fig. 2, w
presentnc(kc/2ukc) as a function ofkc . We read the figure
from right to left. We observe that, due to the different d
sipation mechanisms, the eddy viscosity starts from differ
values at high wave numbers. The different curves
nc(kc/2ukc) go through a transient region, which correspon
roughly to the intermediate range. Then the three cur
merge when they reach the inertial range, which confir
that this range is approximately independent of the diss
tion mechanism.

Figure 3 shows the eddy viscositync(kukc) for simulation

FIG. 2. Eddy viscositync(kc/2ukc) against the cutoffkc for the
different simulations.

FIG. 3. Eddy viscositync(kukc) for various cutoffskc ~simula-
tion ST4!.
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ST4. When the cutoffkc is in or very close to the dissipativ
range ~i.e., 50<kc<70), the eddy viscositync(kukc) rises
sharply in the vicinity of the cutoff. This observation is co
sistent with the results of Domaradzkiet al. @13#. The steep
increase of eddy viscosity reduces as the cutoff is mo
toward smaller wave numbers. For 20<kc<40, which cor-
responds roughly to the intermediate range, the eddy vis
ity decreases slightly near the cutoff. Forkc below 10, it was
difficult to have converged statistics since these shells c
tain only a few modes.

The force correlationsxc
2(kukc), represented in Fig. 4 fo

various cutoffskc , deviate from the initial forcingx0
2(k)

near the cutoff. They present also a sharp rise, which redu
when the cutoff is moved towards small scales. In the int
mediate range (20<kc<40), the deviation is less pro
nounced but is present for a larger subrange of wave n
bers than forkc.50. For a cutoff far in the dissipative rang
(kc'80), negative eddy viscosities have been observed
small k in conjunction with a considerable force correctio
indicating an important reflection of the incidental flux
energy. Viscous simulations, not reported in this work, ha
shown the same behavior but for an extended cutoff ra
since the dissipative range is itself larger.

Simulation ST12 has a much more smaller dissipat
range than simulation ST4 and, therefore, the intermed
range is clearly defined. In Fig. 5, the eddy viscos
nc(kukc) shows a more pronounced reduction near the cu
than ST4 in the intermediate range (kc>30). Forkc570, a
small bump appears nearkc that is due to the fact that we
approach the dissipative range. For a cutoff at the bor
between the intermediate range and the inertial rangekc
510), the eddy viscosity increases nearkc , which is not
unlike the cusp behavior predicted by some theories of
tropic turbulence. We remark that, forkc510, the eddy vis-
cosities are qualitatively the same for ST4 and ST12, thi
not very apparent in the figures since the scalings are dif
ent. Note also that thenc(kukc) increases for smallk. That is,
most likely, an infrared cutoff effect.

The force correlationsxc
2(kukc) in Fig. 6 do not present

the sharp rise observed for ST4 which is associated t
cutoff in the dissipative range. As for the eddy viscosity

FIG. 4. Force correlationxc
2(kukc) for various cutoffskc ~simu-

lation ST4!.
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small bump appears forkc570. However, forkc in the in-
termediate range,xc

2(kukc) shows a clear deviation from
x0

2(k) for a significant range of wave numbers, which cor
sponds roughly to the intermediate range.

These observations are consistent with the following
terpretation of the intermediate range bottleneck effect:
Kolmogorov spectrum is unstable near the dissipative ra
since it is too efficient in transferring energy to high wa
numbers and leads to a system with a too low rate of ene
dissipation. The effect is amplified as the hyperviscosity
dex is increased. The reaction of the system is to prod
enough randomness in the intermediate range~as indicated
by the values of the skewnesss3 and the flatnesss4 of the
velocity derivative in Table I! to decrease the efficiency o

FIG. 5. Eddy viscositync(kukc) for various cutoffskc ~simula-
tion ST12!.
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transfer of energy in order to increase the level of ene
and, therefore, the dissipation. Our observation that the e
viscosity decreases agrees with the reduction of the e
ciency of the energy transfer. It has been shown previou
by Falkovich @14# that, in theory, the eddy viscosity de
creases in the presence of molecular viscosity. The rand
ness arises from instabilities. The corrections to the rand
forcing may be attributed to a backward energy flux resp
sible for the destabilization of the flow structures in the
termediate range.

The simulations were performed on the computers of
Swiss Center for Scientific Computing, Manno. This r
search was supported by the Swiss National Foundation
Scientific Research.

FIG. 6. Force correlationxc
2(kukc) for various cutoffskc ~simu-

lation ST12!.
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