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Viscosity and force corrections induced by the elimination of scales of motion
in randomly forced turbulence
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Systematic scale elimination in the description of randomly forced turbulence leads to a hierarchy of new
terms in the dynamical equations. We consider two of these terms: the viscosity and random forcing correc-
tions. We show how these corrections can be estimated using direct numerical simulation data of homogeneous
isotropic turbulence. In the case of hyperviscous dissipation, the energy spectrum shows, between the inertial
range and the dissipative range, an intermediate range characterized by a reduction of the eddy viscosity and a
correction to the forcing representing a backward energy fl8%063-651X%98)02105-9

PACS numbes): 47.27.Eq, 47.27.Gs

Several authors have proposed studying randomly forcedihere [ - means that the domain of integration is restricted
turbulent flowq 1-3]. Theoretical investigation@.g., renor-  to wave numbergk| <k, wherek. is a prescribed cutoff. The
malization group have focused on the incompressible equations for the low modes may be written as
Navier-Stokes equations forced by a Gaussian white-in-time
noise term with a power-law correlation function in spectral Jv™ <c9v<
space(ffyock™ [4-7]. These works explore the analogies TJF UB@
between scalings in turbulence and scalings in field theory or
critical phenomena[8]. In these theories, the scale- V.0<=0,
elimination procedure leads to an eddy viscosity, a force cor-
rection, a vertex correction and high-order ter(ese Eyink  where
[9]). Such types of randomly forced turbulent systems have
been studied numerically by Machiels and Dev{ll&)] for <(9v> >ﬁv< >,9v> -
y=3. Note also that subgrid scale models including additive g= _U,BK_UBW_U[%W_VD .
noise terms have been proposed recef@lgratiet al. [11]). A A A
The aim of this paper is to present a simple mean-squarRqte thatp< is not defined by a spectral cutoff but is the
algorlth_m su_ltable to compute,_from the num_erlcfal data, they.ossure that ensures tf‘[aI;((?v</§xB)]<+Vp< is sole-
eddy viscosity and the correction to the forcing induced b noidal. We choos@™ such thatg is also solenoidal. The

scale ehmmajuon. : theory of scale elimination gives
More precisely, we consider randomly forced turbulence

described by the following equations:

<
) =f<—Vp<+(—1)h+1th2hv<+g<,

law o0
g-(x,t)=V?2 ff ve(r, o= (x—r,t—7)d7d3r [+ (x,t)
0

a—v+v a—v=f—Vp+(—1)h+1th2hv V.v=0. . .
at - “Paxg : + (other interactions

where the symbok'2" means the equality in a statistical
In these equationsy,(x,t) («=1,2,3) andp(x,t) are re- sense(equality in probability. Some high-order interaction
spectively the velocity and pressure fielfig(x,t) is a sole-  terms have been discussed by Rdsg and Eyink[9]. In the
noidal Gaussian white-noise forcing,is a positive integer present work, we focus on the eddy viscositygr,7) and on
called the hyperviscosity index, ang is the hyperviscosity the force correctiofi;(x,t). The idea is to form the following
parameter. The problem is defined on the domd@n functional:
=]0,27[® with cyclic boundary conditions. We divide the

field v into low-mode (or supergrid-modev= and high- *
mode (or subgrid-modgv~ components Flve(r,7) fe(x,0)]=( |9~ (1) =V o ve(r,7)
2
1 ' ><v<(x—r,t—7)d7d3r —f.(x,1) >,
v(x,t)= f v(k,H)ek*d*k, andv”=v-v~,
(2m)3) <

whereg=~, v=, andf, are random and is deterministic.
The symbol( ) denotes the average. In this expressign,
*Present address: Massachusetts Institute of Technology, Rooand v= are obtained from numerical simulation results.
3-243, 77 Massachusetts Avenue, Cambridge, MA 02139. Then, we seek to determing(r,7) andf.(x,t), which mini-
mize this functional, that is, such that
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TABLE I. Flow parameters.

h Vh E &

L A Te ku 33 54

ST4 4 5.7 10716 0.42 0.158
ST8 8 1.3&% 1070 0.42 0.16
ST12 12 2.5 1048 0.432  0.159

0.969 0.084 1.82 110 —0.32 3.51
0.956 0.092 1.807 85 —-0.29 3.38
0.968 0.072 1.803 107 -0.21 3.30

SHLve(r, ), fe(x,D)] SFLve(r, 7 fo(x1)]
vty 0 and AT

When the external forcing vanishegg(k)=0, Eq. (1) is
equivalent to the formula proposed by Domaradekial.
[13] based on the energy transfer.

This method is general in the sense that high-order interac- Different numerical simulations have been zperfg’rmed
tions can also be taken into account and different minimiza¥ith @ homogeneous isotropic forcing f)o< xo(k)“ock™*.

tion criteria (different functionals¥) can be implemented
based on high-order statistics, for instance.

The spatial discretization of the equations is based on the
classical Fourier spectral method. The time integration is

In practice, we work in Fourier space. The Fourier trans-Performed by a second-order Runge-Kutta schéthe de-

form of the initial forcing is given byf(k,t)= yq(k)h(k,t)
[e.g., xa(k)xk™Y] wherek=|k| and h(k,t) is an isotropic

solenoidal Gaussian white-noise term defined by its correlaf-

tion function
(ho(K',t")hg(k,t)y=(2m)3P 5(k) S(k+K') S(t—t"),

whereP ,5(K)= 6,5~ kakﬁlkz. If we defineg(k,t)=g(k,t)
+f(k,t), then we try to approximatg=(k,t) as

§<(kvt)~Xc(k|kc)h<(kat) - Vc(k| kc)k2v<(k,t),

where the notatiok|k. renders the dependence on the cuto

k. explicit. As an additional assumption, we have remove

tails of the numerical method are presentefflid]). For each
of the calculations, the resolution is Z5todes. The main
eatures of the simulations are reported in Table |, wHere
ande are respectively the mean energy and the mean dissi-
pation rate,L is the integral length scale, is the Taylor
microscale ¢ is the turnover timek, = (e/v3)Y(®"~2) is the
Kolmogorov wave number, ans; ands, are respectively
the skewness and flatness of the velocity derivative/ 9x;.
The energy spectr&(k) and the rescaled energy fluxes
I1(k)/In(k) for each of the simulations are represented in
Figs. 1@ and 1b) [recall that, due to the particular form of
the forcing(ff)=k 3, the energy flux(k) is expected to
srscale likeIT(k)=In(k)]. The energy spectra present three re-
0gions, namely, from low wave numbers to high wave num-

the time dependence of;, i.e., we have assumeud.(r, )
=w(r)é(7). This approximation, usually referred to as the
Markovian approximation, assumes that the subgrid mode:
evolve more quickly than the supergrid modes. The func-
tional F to be minimized reads

f[vc(k|kc) ,Xc(k|kc)] =<|a<(k,t) + Vc(k|kc)k2v<(k,t)
_Xc(k|kc)h<(krt)|2>'

In the implementation of the method, since we treat homo-
geneous isotropic turbulent problems and since the differen
realizations of the velocity field are taken in the statistically
stationary regime, the symb¢l) denotes the combination of

a shell average and a time average. We compute

a(k)=2k*(|v=(k,)[?),
b(k)=(v=(k,t)-g=*(k,t))+(v=*(k,t)-g=(k,1)),
where the asterisk denotes the complex conjugate. The solL.

tion of the systemd&F/dvy(k)=0 and 6F/ Sy (k)=0 is
given by

b(k)
4rk*x3(k)—a(k)’

ve(klke) = D

~ xo(K){k?b(k) —2a(k) +8mk*x5(k)}

Xc(k|kc)_ (2

l0g,,(K)

—1.0 T T
® (@)
8 8
20 | -
— 30} 1
=
w,
3
S a0} .
o ST4
50} ©o8T8 g
> 8T12
-6.0 ‘
0.0 05 25
0.040 . .
(b)
0030 | % &8 |
=1
= 0.020 .
=
= o ST4
0.010 | =8T8 _
° 8T12
0.000 :
0.0 0.5 25

FIG. 1. Energy spectr@) and rescaled energy fluxés) for the
2
8wk x5(k) —2a(k) different simulations.
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FIG. 4. Force correlatiopyﬁ(k|kc) for various cutoffsk, (simu-
lation ST4.

FIG. 2. Eddy viscosityv.(k./2|k.) against the cutofk for the
different simulations.

bers:(i) the inertial range, which is fairly independent of the 514 \Wwhen the cutofk, is in or very close to the dissipative
dissipation mechanisniij) the intermediate range, character- range (i.e., 50<k.<70), the eddy viscosity.(k|k.) rises
ized by a constant energy flux, but the energy spectrum I§harply in the vicinity of the cutoff. This observation is con-

highly influenced by the type of dissipation mechanigil)  gjsient with the results of Domaradzid al. [13]. The steep

the dissipa.tive range. The bump of energy in the ir'tern,1e.diincrease of eddy viscosity reduces as the cutoff is moved
ate range is usually referred to as the bottleneck deviatio

d has b iouslv ob d and vzed. for | tbward smaller wave numbers. For<8.=<40, which cor-
and has been previously observed and analyzed, Tor 'nStanCt%sponds roughly to the intermediate range, the eddy viscos-
in Falkovich [14], Sirovich et al. [15], and Lohse and

Miiller-Groeling[16]. ity decreases slightly near the cutoff. Hqorbelow 10, it was

ifficult to h istics si h hell -
We have applied Eq€1) and(2) to compute the viscosity difficult to have converged statistics since these shells con

KlK df lations 2(k|k.) for 5=k < q tain only a few modes.
v(klk) and force correlationgc(k[ko) for 5<k.=<70 an The force correlationgZ(k|k), represented in Fig. 4 for
for the three simulations ST4, ST8, ST12. In Fig. 2, we

. ! various cutoffsk., deviate from the initial forcing)(g(k)
presentv (k./2|k.) as a function ok.. We read the figure c : ;
from right to left. We observe that, due to the different dis- e the cutoff. They present also a sharp rise, which reduces

o i : . ; hen the cutoff is moved towards small scales. In the inter-
sipation mechanisms, the eddy viscosity starts from differen ' L .

! ; mediate range (20k.<40), the deviation is less pro-
values at high wave numbers. The different curves for

) ) . nounced but is present for a larger subrange of wave num-
ve(k:/2ke) go through a transient region, which COrreSIoonOISbers than fonkC>FE)30. For a cutoff f?':lr in the digsipative range

roughly to the intermediate range. Then the three curve . : -

I X ' k.~80), negative eddy viscosities have been observed for
merge when they reach the inertial range, which confirm small k in conjunction with a considerable force correction
that this range is approximately independent of the dissipa- J '

tion mechanism.

Figure 3 shows the eddy viscosity(k|k.) for simulation
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FIG. 3. Eddy viscosityv.(k|k.) for various cutoffsk, (simula-

tion ST4.

l0g,,(k)

25

indicating an important reflection of the incidental flux of
energy. Viscous simulations, not reported in this work, have
shown the same behavior but for an extended cutoff range
since the dissipative range is itself larger.

Simulation ST12 has a much more smaller dissipative
range than simulation ST4 and, therefore, the intermediate
range is clearly defined. In Fig. 5, the eddy viscosity
v.(k|k.) shows a more pronounced reduction near the cutoff
than ST4 in the intermediate rangk.£30). Fork,=70, a
small bump appears neé&g that is due to the fact that we
approach the dissipative range. For a cutoff at the border
between the intermediate range and the inertial rarge (
=10), the eddy viscosity increases ndar, which is not
unlike the cusp behavior predicted by some theories of iso-
tropic turbulence. We remark that, feg=10, the eddy vis-
cosities are qualitatively the same for ST4 and ST12, this is
not very apparent in the figures since the scalings are differ-
ent. Note also that the,(k|k.) increases for smaK. That is,
most likely, an infrared cutoff effect.

The force correlations(g(klkc) in Fig. 6 do not present
the sharp rise observed for ST4 which is associated to a
cutoff in the dissipative range. As for the eddy viscosity, a
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FIG. 5. Eddy viscosityv.(k|k.) for various cutoffsk, (simula-
tion ST12.

small bump appears fdt.=70. However, fork; in the in-
termediate rangexﬁ(k|kc) shows a clear deviation from

Xé(k) for a significant range of wave numbers, which corre-
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FIG. 6. Force correlatiopyﬁ(k|kc) for various cutoffsk, (simu-
lation ST12.

transfer of energy in order to increase the level of energy
and, therefore, the dissipation. Our observation that the eddy
viscosity decreases agrees with the reduction of the effi-

ciency of the energy transfer. It has been shown previously

sponds roughly to the intermediate range. . X : . )

These observations are consistent with the following in-by Falko_wch [14] that, in theory, the eddy_wscosﬁy de i

. . ) > . creases in the presence of molecular viscosity. The random

terpretation of the |ntermed|ate range bottleneqk effect. th%ess arises from instabilities. The corrections to the random
Kolmogorov spectrum is unstable near the dissipative rang )

since it is too efficient in transferring energy to high WaveForCIng may be attributed to a backward energy flux respon-

. sible for the destabilization of the flow structures in the in-
numbers and leads to a system with a too low rate of energy. ediate range
dissipation. The effect is amplified as the hyperviscosity in- ge.
dex is increased. The reaction of the system is to produce The simulations were performed on the computers of the

enough randomness in the intermediate rafggeindicated Swiss Center for Scientific Computing, Manno. This re-

by the values of the skewnesg and the flatness, of the
velocity derivative in Table)lto decrease the efficiency of

search was supported by the Swiss National Foundation for
Scientific Research.
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